
(1)

High Performance 2D-DCT Architecture for HEVC
Encoder

Maher Abdelrasoul1, Mohammed Sayed1, Maha Elsabrouty1, Victor Goulart1,2

1ECE department, Egypt-Japan university of Science and Technology (E-JUST), Egypt

2Center for Japan-Egypt Cooperation in Science and Technology, Kyushu University, Japan

email: {maher.salem, mohammed.sayed, maha.elsabrouty}@ejust.edu.eg, victor.goulart@acm.org

Abstract— The revolutionary Ultra-High Definition

(UHD) video has found its way to diverse rich multimedia
applications. HEVC (H.265) standard is proposed as the
gateway to increase the compression rate with no loss in
video quality. Large integer DCT, with sizes 16x16 and
32x32, is one of the key new features of the H.265 standard.
In this paper, we propose a new optimized architecture for
integer DCT in HEVC encoder. The proposed architecture
is a fully pipelined architecture with optimized adder-
widths. Simulation results confirm the high performance of
the optimized adder-width design. For 16-DCT, the
proposed architecture increases the maximum clock
frequency by 42.7% and decreases area by 3.1%. While for
32-DCT, the proposed design increases the maximum clock
frequency by 64.8% with cost of increasing area by only
3%.

Keywords—Integer DCT, H.265, HEVC, UHD

encoding/decoding, Pipelining, Adders, Adder-width.

I. INTRODUCTION

With the increasing competition in consumer electronics
market, better quality multimedia is a highly desirable feature
in many applications [1]. However, this increased quality/
resolution comes at the expense of increased multimedia size
and even bit rate for multimedia transmission systems. One
way to provide this highly ultra-high definition media is to
improve the compression of the media to target optimizing
both the quality of the multimedia content and minimize the bit
rate or storage needed to the minimum possible. In addition,
real time processing is key for the delay intolerable multimedia
transmission and communication. Many video coding
standards, for video compression, have been proposed starting
by H.261 in 1990 [2], and ending by the High Efficiency Video
Coding (HEVC) standard which known as H.265 in 2012.
HEVC focuses on two key issues; increased video resolution
and increased use of parallel processing architectures [1].

One of the most important blocks in any video
encoder/decoder is the transformation block. Discrete Cosine
Transform (DCT) is used in most of video/image coding
standards because that it can help in separating the image into
spectral sub-bands of differing importance. Integer DCT is
employed in the latest video coding standards to reduce the
computational complexity and to eliminate the error produced
by floating point approximations involved in the traditional
DCT.

In many video/image coding standards, image or video
frame is partitioned into processing blocks (i.e. prediction

blocks). The prediction block is partitioned into square
transformation blocks. In the new HEVC standard, the
prediction block size is variable and can be larger than the
prediction block in the previous H.264 standard. Its range
changed from 4*4 to 16*16 in H.264 while it changes from 4*4
to 64*64 in HEVC [3],[4]. Changing the range of the
prediction block size changes the range of the transform block
size form 4*4 to 8*8 in H.264 to 4*4 to 32*32 in HEVC. The
new bigger transform block sizes and the new integer DCT
transformation matrix make it important to work on building
new integer DCT architectures to achieve high performance in
terms of throughput and used resources.

The rest of this paper is organized as follows: in Section II,
we give an overview on DCT. The related work and the base
architecture of DCT are presented in Section III. Then, our
proposed modifications are presented in Section IV. In Section
V, we evaluate all the architectures and compare between
them. Finally, in Section VI, we conclude the paper.

II. OVERVIEW ON INTEGER DCT

DCT is a transformation from spatial domain to the
frequency domain. DCT can be represented as shown in Eq. 1.

CxX

1

...

1

0

NX

X

X

=

1,11,10,1

1,11,10,1

1,01,00,0

...

............

...

...

NNNN

N

N

CCC

CCC

CCC

1

...

1

0

Nx

x

x

where 1Nx is the input array of values in the spatial domain,

1NX is an array of the frequency coefficients, and N NC is

the transformation matrix. However, floating-point operations
are complex and they result in an error due to the
approximation done at the transmitter cannot be retrieved at the
receiver.

Integer DCT is an integer approximation of the DCT. It is
used to simplify the calculations and to avoid mismatching
between coders and decoders [12]. The integer DCT basis
functions were derived by approximating scaled DCT basis
functions, under considerations such as limiting the necessary
dynamic range for transform computation and maximizing the
precision and closeness to orthogonality. One of the most
important features of the transformation matrix is that the
columns of the even rows are mirrored (i.e. for N-point DCT,
column with index i has the same values of the column with
index N-1-i) and the columns of the odd rows are negative

(2)

(3)

(4)

mirrored. This feature is very helpful in reducing the
calculations by adding or subtracting inputs that have common
multiplier. Eq. 2 shows the reduction of Eq. 2.

aCX Neven 2/
 ,

bMX Nodd 2/

where the elements values of the matrices CN/2, and MN/2 are
defined as

ji

N

ji

N CC ,2,

2/ 12,0 Nji

ji

N

ji

N CM ,12,

2/

 12,0 Nji

and the element of the arrays a, and b are defined as

 iNxixia 1
 ,

 iNxixib 1

It is important to mention that CN/2 is the transformation
matrix of N/2-point DCT. This enable the reusability of this
transformation as it can be used as N/2-point DCT or as a part
of N-point DCT transformation. Another important feature is
the constant values of the transformation matrix elements,
which turn the problem from a traditional matrix multiplication
into a set of multiple constant multiplications (MCMs).
Consequently, a highly regular architecture and a low-
complexity implementation can be achieved.

2D-DCT is implemented by two separable 1D-DCTs. The
first DCT does the transformation to the rows of the TB. Then
a transpose circuit makes a transposition of the result rows to
output the columns of the transformed block as new rows for
the next step. The second DCT does the transformation to
columns of the result block of the first DCT. Fig. 1 shows the
steps of 2D-DCT process.

III. RELATED WORK

In the state-of-art, there is a very large and wide research on
DCT. For integer DCT, in the last few years, several different
transform cores have been presented. However, most of them
were targeting H.264/AVC. Furthermore, low work focused on
implementing a complete 2D-DCT. In [10], a 2D-DCT
transform in H.264 is implemented by using duplicated 1D-
DCT transform and parallel register array are used to realize
the transpose operation. Chen et al have developed
fast DCT algorithm for H.264 using butterfly approach which
is used in implementing fast Fourier transform [11]. In [12],
Chih proposed a novel 2D-DCT fast algorithm for realization
of 4x4 forward integer transform in H.264 based on matrix
operations with Kronecker product and direct sum. In addition,
many researches targets hardware implementation for the
transform block in H.264 as in [13], [14], and others.

Since the HEVC standard was published recently, there are
a few published works about hardware implementations of the
DCT transforms for this standard. In [15] three flexible
architectures are proposed to perform 1D-DCT operation for
any size. This work focused on the reusability and flexibility
that allow one design do more than one function. The aim of
this work was to reduce the complexity of the encoder and to
simplify the computation of the transforms. In [16] W. Zhao
and T. Song proposed an architecture based on the similarities
of the constants that are multiplied by the input values. In [17]
P.K. Meher et al. proposed a DCT architecture based on MCM
as done in [16]. However, their architecture is modular so that

it enables reusability for the N/2-point DCT module in
implementing the N-point DCT.

IV. THE PROPOSED OPTIMIZED ARCHITECTURE

Most of the previous work focused on implementing the
integer DCT algorithm in an efficient way by replacing the
multipliers with shifters and adders. In addition, they exploit
the similarities in the coefficients of the transformation matrix.
However, to the best of our knowledge, no work was done to
optimize the DCT implementation itself through pipelining the
critical paths and optimizing the adders’ lengths. Such
optimization is necessary since the computational complexity
of the DCT module increased dramatically in the new HEVC
standard due to increasing the transformation block size to up
to 32*32 pixels instead of 8*8 pixels in the previous H.264
standard. Therefore, we started with the recently published
DCT architecture in [17] and optimized it by pipelining the
critical paths and optimizing the adders’ lengths. We target
higher clock frequency to increase the number of blocks that
can be processed per second, hence, process higher video
resolutions.

As shown in Fig. 1. The base architecture proposed in [17]
is divided into three processing stages. The first stage is Input
Adder Unit (IAU), which adds and subtracts the input values as
presented in Eq. 4. This IAU is useful in reducing the
calculation into two parts as shown in Eq. 2. The first one is
N/2-point DCT, and the second one is N/2 matrix
multiplication. The second stage is Shift Add Unit (SAU). The
SAU is a MCM circuit, which is used to multiply each of its
inputs by a set of constants. N-point DCT has N/2 SAU blocks,
each SAU multiply its inputs by N/2 constants. The third sage
is Output Add Unit (OAU). The OAU is used to do the final
additions on the outputs of Different SAUs. In N-point DCT,
each OAU makes N/2 additions to produce the final odd
coefficients. In addition, the SAU and OAU are running in
parallel with the N/2-point DCT unit.

Fig. 1. General Architecture of N-point integer DCT

A. Pipelining the architecture

Firstly, we have pipelined the circuit into stages. As shown
in Fig. 2, any N-point DCT consists of 4 main blocks. The
input/add unit (IAU), shift-add unit (SAU), output-add unit
(OAU), and N/2-point DCT. Therefore, as shown in Fig.3, we
have divided the N-point DCT into stages equal to the N/2-
point DCT stages plus one stage for the IAU. The smallest size
DCT witch is 4-point DCT is divided into three stages for the

IAU, SAU, and OAU because the calculation of 2-point DCT
does not need IAU block.

B. Adder-size optimization.

As mentioned above, the integer DCT implementation,
basically, depends on MCM, which took place in the SAU.
Several algorithms can be used to generate circuit topologies
with shifters and adders to perform MCM process. To the best
of our knowledge, the best existing algorithms are BHM [6]
which is a modification to BHA [7], and RAG-n [6,8], which is
limited to 19 bit constant, and Hcub [9]. Hcub has advantage
over the other algorithms since it can optimize the circuit and
minimize the critical path by reducing the number of additions
in each path although, in some cases, this may add more paths
and, hence, increase the total number of adders in the circuit.
For example, Fig. 3 shows the circuits generated by the three
algorithms to multiply one input by two values (83, and 36).. It
can be noted that the circuit generated with the Hcub algorithm
has two adders in its critical path while the other circuits have
three adders.

After pipelining the DCT architecture, the critical path
becomes in the SAU circuits. Using the Hcub algorithm an
optimized shift-add structure was generated with the smallest
possible depth. In addition, we worked on optimizing the
adders’ width. Each adder in the SAU circuits was designed
with the minimum number of bits that can represent its output.
For example, for the adder which results 9x, we can decrease
the adder width to be equal the number of the input bits (x size)
plus 4 bits only. Adding 4 bits is because the nearest power of
two number to 9 and is 16, which mean that the input will be
shifted left 4 times. This way of optimization, outcomes two
benefits. First, it reduces the delay of each adder and
consequently, the delay of the whole circuit. Second, it
decreases the area of each adder and hence, the total area of the
circuit is decreased.

C. OAU optimization

After optimizing the SAU circuits, the critical path

becomes in the OAUs. In N-point DCT, OAU adds N/2 inputs.

The best way of implementing the OAU in terms of

performance is implementing it in tree structure. For any N-

point DCT, the N/2-point DCT takes log2N cycles. Therefore,

log2N-1 cycles can be used to pipeline the OAU. As the OAU

has N/2 inputs, thus it has Log2(N/2) stages of adders, which

are equal to the number of cycles that can be assign to it. In

other words, the OAU is pipelined in such a way that only one

adder in each pipeline stage. Fig. 4 shows the pipelining stages

of N-point DCT. It is clear that pipelining the OAU has no

cost in increasing the overall pipeline stages.

V. EVALUATION AND RESULTS

In this section, the performance of the base integer 2D-

DCT architecture is evaluated versus the same architecture

with optimized SAU and with both optimized SAU and

pipelined OAU in terms of frequency and utilized resources.

The used prototyping platform is Xilinx Virtex-7 FPGA .

Fig. 2. Pipeline stages of 32-point integer DCT

Fig. 3. MCM algorithms (a) BHM (b) RAG-n (c) Hcub

Fig. 4. Pipeline stages of 32-point integer DCT with pipelined OAU

The three architectures were described in Verilog RTL

and the correctness of each description is verified by

simulating it using ISim tool, which is a tool of Xilinx 14.5

toolset. Then, each design is synthesized and mapped to one of

the latest Xilinx FPGA devices (Virtex-7). Virtex-7 family

uses 28nm process technology. The slice in Virtex-7 consists

of four 6-input LUTs and eight flip-flops [18]. For the

synthesis of the designs, Xilinx ISE 14.5 synthesizer was used.

Speed was the optimization goal for all designs. The

Maximum clock frequency and utilized resources are

presented in Fig. 5, and Fig. 6 respectively.

As shown, the SAU optimization effect is presented in

terms of maximum clock frequency (Fig.5) for 4,8,16-point

DCT. This is because that the SAU is the critical path of the

circuit while in 32-point DCT, the OAU is the critical path.

Actually, the optimization in the SAU block reduced the SAU

delay so that the critical path became in the OAU. Therefore,

the next step of optimization by pipelining the OAU clarified

the gain achieved by optimizing the SAU which done by

reducing the adder sizes in the SAU block to the minimum

possible sizes. As mentioned earlier, for 32-point DCT, the

critical path is in the OAU. Therefore, the effect of optimizing

the SAU block is not shown in the SAU optimization results.

However, it will be accumulated to the effect of pipelining at

the next step of optimization.

For OAU optimization, as expected the frequency of the

circuits increased, mainly for larger DCTs. Where, the OAU

logic levels are larger. There was no cost in terms of

increasing the number of cycles required to transform one

block. For 4-point DCT, the OAU is not pipelined because it is

only one level of logic. Therefore, the maximum clock

frequency did not change. Indeed, pipelining OAU block

shows the benefit of optimizing the SAU, which became the

critical path after the pipelining process. The proposed

optimizations shows improved maximum clock frequency by

approximately 1%, 3.4%, 42.7%, and 64.8% for 4-point, 8-

point, 16-point, and 32-point DCT respectively.

For area results (Fig. 6), the area is reduced by optimizing

the SAU block. However, due to selecting speed as the

optimization goal for the designs, the synthesizer tries to

achieve as much speed as possible even if the cost is more

area. The proposed optimizations shows a reduction in area

resources by approximately 0.5%, 5.4%, and 3.1% for 4-point,

8-point, and 16-point DCT respectively and an increasing by

only 3% for 32-point DCT.

The proposed 2D-DCT architecture needs 32.38ns to
process one 4*4 block while it needs 57.6ns for 8*8 block,
103.7ns for 16*16 block, and 214.25ns for 32*32 block. In
this sense, our architecture can process videos with 8K UHD
resolution at 30 fps rate. It may fail to process this resolution
only if the whole frame is divided into small 4*4 transform
blocks which is a very rare condition that does not happen with
such super resolution (i.e. 8K UHD).

Fig. 5. Maximum clock frequency for different designs of N-point integer

DCT

Fig. 6. Number of LUT-FF pairs for different designs of N-point integer DCT

VI. CONCLUSIONS

This paper presented an overview on integer DCT for
HEVC and the trend of implementing its architecture by MCM
algorithms. Further, we have presented a new optimized
architecture for 2D-DCT using adder size optimization. The
results show a good improvement in both used resources and

maximum clock frequency especially for DCT of large block
sizes that were added to the new standard to improve video
compression for higher resolution videos. For 16-DCT, the
proposed architecture increases the maximum clock frequency
by 42.7% and decreased number of LUTs by 3.1%. While for
32-DCT, it increases the maximum clock frequency by 64.8%
with cost of increasing number of LUTs by only 3%. The
proposed architecture can be used in processing 8K UHD video
in real time.

REFERENCES

[1] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, ―Overview ofthe
High Efficiency Video Coding (HEVC) Standard,‖ IEEE Transactions on
Circuits and Systems for Video Technology,vol.22, NO.12, pp.1649-
1668, 2012.

[2] Ohm, J., Sullivan, G.J., Schwarz, H., Thiow Keng Tan, ―Comparison of
the Coding Efficiency of Video Coding Standards—Including High
Efficiency Video Coding (HEVC)‖, IEEE Transactions on Circuits and
Systems for Video Technology, vol.22, no. 12, pp:1-15, 2012.

[3] H. Schwarz, D. Marpe, and T. Wiegand, ―Overview of the scalable video
coding extension of the H.264/AVC standard,‖ IEEE Trans. Circuits Syst.
Video Technol., vol. 17, no. 9, pp. 1103–1120, 2007.

[4] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, ―Overview of
the H.264/AVC video coding standard,‖ IEEE Trans. Circuits Syst.Video
Technol., vol. 13, no. 7, pp. 560–576, 2003.

[5] N. Ahmed, T. Natarajan and K. R. Rao, "Discrete cosine transform,"IEEE
Trans. Comput., vol. C-23, pp. 90-93, 1974.

[6] A. G. Dempster, M.D. Macleod, "Use of minimum-adder multiplier blocks
in FIR digital filters," IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal processing, vol.42, no.9, pp.569-577, 1995.

[7] D. R. Bull, D. H. Horrocks, "Primitive operator digital filters," IEE
Proceedings of Circuits, Devices and Systems, vol.138, no.3, pp.401-
412, 1991.

[8] A. G. Dempster, M.D. Macleod, "Constant integer multiplication using
minimum adders," Circuits, Devices and Systems, IEE Proceedings,
vol.141, no.5, pp.407-413, 1994.

[9] Y. Voronenko, and M. Püschel, ‖Multiplierless Multiple Constant
Multiplication‖, ACM Transactions on Algorithms (TALG), vol. 3, Issue
2, May 2007.

[10] L. Ling-Zhi, Q. Lin, R. Meng-Tian, and J. Li, ―A 2-D forward/inverse
integer transform processor of H.264 based on highly-parallel
architecture,‖ in 4th IEEE Int. Workshop System-on-Chip Real-Time
Applications, pp. 158–161, 2004.

[11] W. H. Chen, C. H. Smith, and S. C. Fralick, ―A fast computational
algorithm for the discrete cosine transform,‖ IEEE Trans. Commun.,vol.
COM-25, no. 9, pp. 1004–1009, 1977.

[12] C.-P. Fan, ―Fast 2-dimensional 4x4 forward integer transform
implementation for H.264/AVC,‖ IEEE Trans. Circuits Syst. II, vol. 53,
no. 3, pp. 174–177, 2006.

 [13] L. Ling-Zhi, Q. Lin, R. Meng-Tian, and J. Li, ―A 2-D forward/inverse
integer transform processor of H.264 based on highly-parallel
architecture,‖ in 4th IEEE Int. Workshop System-on-Chip Real-Time
Applications, pp. 158–161, 2004.

[14] C.-P. Fan, ―Cost-effective hardware sharing architectures of fast 8x8 and
4x4 integer transforms for H.264/AVC,‖ in 2006 IEEE Asia Pacific Conf.
Circuits Syst. (APCCAS’06), pp. 776–779, 2006.

[15] S. Y. Park and P. K. Meher, ―Flexible Integer DCT Architectures for
HEVC‖, IEEE International Symposium on Circuits and Systems
(ISCAS), 2013.

[16] Wenjun Zhao; Onoye, T. ; Tian Song, ―High-performance multiplierless
transform architecture for HEVC‖, IEEE International Symposium on
Circuits and Systems (ISCAS), 2013.

[17] P. K. Meher, S. Y. Park, B. K. Mohanty, K. S. Lim, and C. Yeo,
―Efficient Integer DCT Architectures for HEVC‖, IEEE Transactions on
Circuits and Systems for Video Technology, 2013.

[18]http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series
_Overview.pdf

http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=28
http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=28

