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Abstract— The revolutionary Ultra-High Definition 

(UHD) video has found its way to diverse rich multimedia 
applications. HEVC (H.265) standard is proposed as the 
gateway to increase the compression rate with no loss in 
video quality. Large integer DCT, with sizes 16x16 and 
32x32, is one of the key new features of the H.265 standard. 
In this paper, we propose a new optimized architecture for 
integer DCT in HEVC encoder. The proposed architecture 
is a fully pipelined architecture with optimized adder-
widths. Simulation results confirm the high performance of 
the optimized adder-width design. For 16-DCT, the 
proposed architecture increases the maximum clock 
frequency by 42.7% and decreases area by 3.1%. While for 
32-DCT, the proposed design increases the maximum clock 
frequency by 64.8% with cost of increasing area by only 
3%. 
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I. INTRODUCTION 

With the increasing competition in consumer electronics 
market, better quality multimedia is a highly desirable feature 
in many applications [1]. However, this increased quality/ 
resolution comes at the expense of increased multimedia size 
and even bit rate for multimedia transmission systems. One 
way to provide this highly ultra-high definition media is to 
improve the compression of the media to target optimizing 
both the quality of the multimedia content and minimize the bit 
rate or storage needed to the minimum possible. In addition, 
real time processing is key for the delay intolerable multimedia 
transmission and communication. Many video coding 
standards, for video compression, have been proposed starting 
by H.261 in 1990 [2], and ending by the High Efficiency Video 
Coding (HEVC) standard which known as H.265 in 2012. 
HEVC focuses on two key issues; increased video resolution 
and increased use of parallel processing architectures [1]. 

One of the most important blocks in any video 
encoder/decoder is the transformation block. Discrete Cosine 
Transform (DCT) is used in most of video/image coding 
standards because that it can help in separating the image into 
spectral sub-bands of differing importance. Integer DCT is 
employed in the latest video coding standards to reduce the 
computational complexity and to eliminate the error produced 
by floating point approximations involved in the traditional 
DCT. 

In many video/image coding standards, image or video 
frame is partitioned into processing blocks (i.e. prediction 

blocks). The prediction block is partitioned into square 
transformation blocks. In the new HEVC standard, the 
prediction block size is variable and can be larger than the 
prediction block in the previous H.264 standard. Its range 
changed from 4*4 to 16*16 in H.264 while it changes from 4*4 
to 64*64 in HEVC [3],[4]. Changing the range of the 
prediction block size changes the range of the transform block 
size form 4*4 to 8*8 in H.264 to 4*4 to 32*32 in HEVC. The 
new bigger transform block sizes and the new integer DCT 
transformation matrix make it important to work on building 
new integer DCT architectures to achieve high performance in 
terms of throughput and used resources. 

The rest of this paper is organized as follows: in Section II, 
we give an overview on DCT. The related work and the base 
architecture of DCT are presented in Section III. Then, our 
proposed modifications are presented in Section IV. In Section 
V, we evaluate all the architectures and compare between 
them. Finally, in Section VI, we conclude the paper. 

II. OVERVIEW ON INTEGER DCT 

DCT is a transformation from spatial domain to the 
frequency domain. DCT can be represented as shown in Eq. 1.  
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where 1Nx  is the input array of values in the spatial domain, 

1NX  is an array of the frequency coefficients, and N NC  is 

the transformation matrix. However, floating-point operations 
are complex and they result in an error due to the 
approximation done at the transmitter cannot be retrieved at the 
receiver. 

Integer DCT is an integer approximation of the DCT. It is 
used to simplify the calculations and to avoid mismatching 
between coders and decoders [12]. The integer DCT basis 
functions were derived by approximating scaled DCT basis 
functions, under considerations such as limiting the necessary 
dynamic range for transform computation and maximizing the 
precision and closeness to orthogonality. One of the most 
important features of the transformation matrix is that the 
columns of the even rows are mirrored (i.e. for N-point DCT, 
column with index i has the same values of the column with 
index N-1-i) and the columns of the odd rows are negative 
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mirrored. This feature is very helpful in reducing the 
calculations by adding or subtracting inputs that have common 
multiplier. Eq. 2 shows the reduction of Eq. 2.  
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where the elements values of the matrices CN/2, and MN/2 are 
defined as 
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and the element of the arrays a, and b are defined as 
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It is important to mention that CN/2 is the transformation 
matrix of N/2-point DCT. This enable the reusability of this 
transformation as it can be used as N/2-point DCT or as a part 
of N-point DCT transformation. Another important feature is 
the constant values of the transformation matrix elements, 
which turn the problem from a traditional matrix multiplication 
into a set of multiple constant multiplications (MCMs). 
Consequently, a highly regular architecture and a low-
complexity implementation can be achieved. 

2D-DCT is implemented by two separable 1D-DCTs. The 
first DCT does the transformation to the rows of the TB. Then 
a transpose circuit makes a transposition of the result rows to 
output the columns of the transformed block as new rows for 
the next step. The second DCT does the transformation to 
columns of the result block of the first DCT. Fig. 1 shows the 
steps of 2D-DCT process.  

III. RELATED WORK 

In the state-of-art, there is a very large and wide research on 
DCT. For integer DCT, in the last few years, several different 
transform cores have been presented. However, most of them 
were targeting H.264/AVC. Furthermore, low work focused on 
implementing a complete 2D-DCT. In [10], a 2D-DCT 
transform in H.264 is implemented by using duplicated 1D-
DCT transform and parallel register array are used to realize 
the transpose operation. Chen et al have developed 
fast DCT algorithm for H.264 using butterfly approach which 
is used in implementing fast Fourier transform [11]. In [12], 
Chih proposed a novel 2D-DCT fast algorithm for realization 
of 4x4 forward integer transform in H.264 based on matrix 
operations with Kronecker product and direct sum. In addition, 
many researches targets hardware implementation for the 
transform block in H.264 as in [13], [14], and others. 

Since the HEVC standard was published recently, there are 
a few published works about hardware implementations of the 
DCT transforms for this standard. In [15] three flexible 
architectures are proposed to perform 1D-DCT operation for 
any size. This work focused on the reusability and flexibility 
that allow one design do more than one function. The aim of 
this work was to reduce the complexity of the encoder and to 
simplify the computation of the transforms. In [16] W. Zhao 
and T. Song proposed an architecture based on the similarities 
of the constants that are multiplied by the input values. In [17] 
P.K. Meher et al. proposed a DCT architecture based on MCM 
as done in [16]. However, their architecture is modular so that 

it enables reusability for the N/2-point DCT module in 
implementing the N-point DCT. 

IV. THE PROPOSED OPTIMIZED ARCHITECTURE 

Most of the previous work focused on implementing the 
integer DCT algorithm in an efficient way by replacing the 
multipliers with shifters and adders. In addition, they exploit 
the similarities in the coefficients of the transformation matrix. 
However, to the best of our knowledge, no work was done to 
optimize the DCT implementation itself through pipelining the 
critical paths and optimizing the adders’ lengths. Such 
optimization is necessary since the computational complexity 
of the DCT module increased dramatically in the new HEVC 
standard due to increasing the transformation block size to up 
to 32*32 pixels instead of 8*8 pixels in the previous H.264 
standard. Therefore, we started with the recently published 
DCT architecture in [17] and optimized it by pipelining the 
critical paths and optimizing the adders’ lengths. We target 
higher clock frequency to increase the number of blocks that 
can be processed per second, hence, process higher video 
resolutions. 

As shown in Fig. 1. The base architecture proposed in [17] 
is divided into three processing stages. The first stage is Input 
Adder Unit (IAU), which adds and subtracts the input values as 
presented in Eq. 4. This IAU is useful in reducing the 
calculation into two parts as shown in Eq. 2. The first one is 
N/2-point DCT, and the second one is N/2 matrix 
multiplication. The second stage is Shift Add Unit (SAU). The 
SAU is a MCM circuit, which is used to multiply each of its 
inputs by a set of constants. N-point DCT has N/2 SAU blocks, 
each SAU multiply its inputs by N/2 constants. The third sage 
is Output Add Unit (OAU). The OAU is used to do the final 
additions on the outputs of Different SAUs. In N-point DCT, 
each OAU makes N/2 additions to produce the final odd 
coefficients. In addition, the SAU and OAU are running in 
parallel with the N/2-point DCT unit.  

 

Fig. 1. General Architecture of N-point integer DCT 

A. Pipelining the architecture  

Firstly, we have pipelined the circuit into stages. As shown 
in Fig. 2, any N-point DCT consists of 4 main blocks. The 
input/add unit (IAU), shift-add unit (SAU), output-add unit 
(OAU), and N/2-point DCT. Therefore, as shown in Fig.3, we 
have divided the N-point DCT into stages equal to the N/2-
point DCT stages plus one stage for the IAU. The smallest size 
DCT witch is 4-point DCT is divided into three stages for the 



IAU, SAU, and OAU because the calculation of 2-point DCT 
does not need IAU block. 

B. Adder-size optimization.  

As mentioned above, the integer DCT implementation, 
basically, depends on MCM, which took place in the SAU. 
Several algorithms can be used to generate circuit topologies 
with shifters and adders to perform MCM process. To the best 
of our knowledge, the best existing algorithms are BHM [6] 
which is a modification to BHA [7], and RAG-n [6,8], which is 
limited to 19 bit constant, and Hcub [9]. Hcub has advantage 
over the other algorithms since it can optimize the circuit and 
minimize the critical path by reducing the number of additions 
in each path although, in some cases, this may add more paths 
and, hence, increase the total number of adders in the circuit. 
For example, Fig. 3 shows the circuits generated by the three 
algorithms to multiply one input by two values (83, and 36).. It 
can be noted that the circuit generated with the Hcub algorithm 
has two adders in its critical path while the other circuits have 
three adders. 

After pipelining the DCT architecture, the critical path 
becomes in the SAU circuits. Using the Hcub algorithm an 
optimized shift-add structure was generated with the smallest 
possible depth. In addition, we worked on optimizing the 
adders’ width. Each adder in the SAU circuits was designed 
with the minimum number of bits that can represent its output. 
For example, for the adder which results 9x, we can decrease 
the adder width to be equal the number of the input bits (x size) 
plus 4 bits only. Adding 4 bits is because the nearest power of 
two number to 9 and is 16, which mean that the input will be 
shifted left 4 times. This way of optimization, outcomes two 
benefits. First, it reduces the delay of each adder and 
consequently, the delay of the whole circuit. Second, it 
decreases the area of each adder and hence, the total area of the 
circuit is decreased. 

C. OAU optimization  

After optimizing the SAU circuits, the critical path 

becomes in the OAUs. In N-point DCT, OAU adds N/2 inputs. 

The best way of implementing the OAU in terms of 

performance is implementing it in tree structure. For any N-

point DCT, the N/2-point DCT takes log2N cycles. Therefore, 

log2N-1 cycles can be used to pipeline the OAU. As the OAU 

has N/2 inputs, thus it has Log2(N/2) stages of adders, which 

are equal to the number of cycles that can be assign to it. In 

other words, the OAU is pipelined in such a way that only one 

adder in each pipeline stage. Fig. 4 shows the pipelining stages 

of N-point DCT. It is clear that pipelining the OAU has no 

cost in increasing the overall pipeline stages. 

V. EVALUATION AND RESULTS 

In this section, the performance of the base integer 2D-

DCT architecture is evaluated versus the same architecture 

with optimized SAU and with both optimized SAU and 

pipelined OAU in terms of frequency and utilized resources. 

The used prototyping platform is Xilinx Virtex-7 FPGA .  

 

 

Fig. 2. Pipeline stages of 32-point integer DCT 

 

Fig. 3.  MCM algorithms (a) BHM (b) RAG-n (c) Hcub 

 

Fig. 4. Pipeline stages of 32-point integer DCT with pipelined OAU 

The three architectures were described in Verilog RTL 

and the correctness of each description is verified by 

simulating it using ISim tool, which is a tool of Xilinx 14.5 

toolset. Then, each design is synthesized and mapped to one of 

the latest Xilinx FPGA devices (Virtex-7). Virtex-7 family 

uses 28nm process technology. The slice in Virtex-7 consists 

of four 6-input LUTs and eight flip-flops [18]. For the 

synthesis of the designs, Xilinx ISE 14.5 synthesizer was used. 

Speed was the optimization goal for all designs. The 

Maximum clock frequency and utilized resources are 

presented in Fig. 5, and Fig. 6 respectively.  

As shown, the SAU optimization effect is presented in 

terms of maximum clock frequency (Fig.5) for 4,8,16-point 

DCT. This is because that the SAU is the critical path of the 

circuit while in 32-point DCT, the OAU is the critical path. 

Actually, the optimization in the SAU block reduced the SAU 

delay so that the critical path became in the OAU. Therefore, 

the next step of optimization by pipelining the OAU clarified 

the gain achieved by optimizing the SAU which done by 

reducing the adder sizes in the SAU block to the minimum 

possible sizes. As mentioned earlier, for 32-point DCT, the 

critical path is in the OAU. Therefore, the effect of optimizing 

the SAU block is not shown in the SAU optimization results. 

However, it will be accumulated to the effect of pipelining at 

the next step of optimization. 



For OAU optimization, as expected the frequency of the 

circuits increased, mainly for larger DCTs. Where, the OAU 

logic levels are larger. There was no cost in terms of 

increasing the number of cycles required to transform one 

block. For 4-point DCT, the OAU is not pipelined because it is 

only one level of logic. Therefore, the maximum clock 

frequency did not change. Indeed, pipelining OAU block 

shows the benefit of optimizing the SAU, which became the 

critical path after the pipelining process. The proposed 

optimizations shows improved maximum clock frequency by 

approximately 1%, 3.4%, 42.7%, and 64.8%  for 4-point, 8-

point, 16-point, and 32-point DCT respectively. 

For area results (Fig. 6), the area is reduced by optimizing 

the SAU block. However, due to selecting speed as the 

optimization goal for the designs, the synthesizer tries to 

achieve as much speed as possible even if the cost is more 

area. The proposed optimizations shows a reduction in area 

resources by approximately 0.5%, 5.4%, and 3.1% for 4-point, 

8-point, and 16-point DCT respectively and an increasing by 

only 3% for 32-point DCT. 

The proposed 2D-DCT architecture needs 32.38ns to 
process one 4*4 block while it needs 57.6ns for 8*8 block, 
103.7ns for  16*16 block, and 214.25ns for 32*32 block. In 
this sense, our architecture can process videos with 8K UHD 
resolution at 30 fps rate. It may fail to process this resolution 
only if the whole frame is divided into small 4*4 transform 
blocks which is a very rare condition that does not happen with 
such super resolution (i.e. 8K UHD). 

 
Fig. 5. Maximum clock frequency for different designs of N-point integer 

DCT 

 
Fig. 6. Number of LUT-FF pairs for different designs of N-point integer DCT 

VI. CONCLUSIONS 

This paper presented an overview on integer DCT for 
HEVC and the trend of implementing its architecture by MCM 
algorithms. Further, we have presented a new optimized 
architecture for 2D-DCT using  adder size optimization. The 
results show a good improvement in both used resources and 

maximum clock frequency especially for DCT of large block 
sizes that were added to the new standard to improve video 
compression for higher resolution videos. For 16-DCT, the 
proposed architecture increases the maximum clock frequency 
by 42.7% and decreased number of LUTs by 3.1%. While for 
32-DCT, it increases the maximum clock frequency by 64.8% 
with cost of increasing number of LUTs by only 3%. The 
proposed architecture can be used in processing 8K UHD video 
in real time. 
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